Voltage for Point Charge, or sphere where $r \geq R$	$V = \frac{q}{4\pi\epsilon_0 r}$	$\frac{Electrostatics}{V = \frac{[J]}{[C]}}, \vec{E} = \frac{[V]}{[M]}$	$\oint \vec{E} * d\vec{A} = \frac{Q_{enclosed}}{\epsilon_0}$
$\phi_{Electric} = \int E * \cos \theta * dA$	$V = \frac{U}{q}$	$K + U = \frac{1}{2}mv^2 + qV$	$V = -\int_{P_0}^{P} \vec{E} * d\vec{s} + V_0$
$V = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{r}$	$\vec{F} = \frac{k_e q_1 q_2}{r^2} \hat{r}$	$\overrightarrow{F_{Electric Field}} = q \vec{E}$	$\overrightarrow{E_{field}} = \frac{k_e q}{r^2} \hat{r}$
$ \rho_{resistivity} = R \frac{A}{l} $	$k_e = \frac{1}{4\pi\epsilon_0}$	Charge on a rod, Uniform $V(x) = \frac{Q}{4\pi\epsilon_0 l} \ln\left(\frac{x+l}{x}\right) \text{ or } V(x) = k\lambda \ln \frac{x+l}{x}$	For Capacitor of Charge Q $U = \frac{1}{2}QV = \frac{1}{2}CV^{2}$
$E = -\frac{dV}{ds}$	Potential of arrangement of charges $U = \frac{1}{4\pi\epsilon_0} * \frac{q_1q_2}{r_{12}} + \frac{1}{4\pi\epsilon_0} * \frac{q_1q_3}{r_{23}} + \frac{1}{4\pi\epsilon_0} * \frac{q_1q_3}{r_{13}}$	Capacitor with Dielectric $C' = \kappa C$	For parallel plate capacitor in general $C = \frac{\epsilon_0 A}{d} \mid C = \frac{Q}{\Delta V}$
$\frac{DC \ Circuits}{I = \frac{dq}{dt}}$	Parallel Capacitors $C_{eq} = C_1 + C_2 + \dots + C_n$	Parallel Resistors $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	Series Capacitors $\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_n}$
For conductor of resistivity $R = rac{ ho l}{A}$	Drift Velocity $V_d = rac{I}{e n_e \pi r^2}$	Ohmic Heating $P = I^2 R$	Series Resistors $R_{eq} = R_1 + R_2 + \dots + R_n$
$\oint \overline{B} * d\overline{s} = \mu_0 I_{enc} \rightarrow Bs = \mu_0 I_{enc}$	Magnetic Field from a current carrying wire $B = \frac{\mu_0 I}{2\pi r}$	Magnetic Field Force $\vec{F} = q\vec{V} \times \vec{B}$	Length in terms of radians $l=r heta$
Magnetic flux $oldsymbol{\phi}_B = ec{B} imes ec{A}$	Force on a current carrying wire in a uniform magnetic field $F = ILB \mid d\vec{F} = Id\vec{L} \times \vec{B}$	$ au(torque) = \mu(mag.d.mnt) imes \vec{B}$ where $\mu = IA$	Cyclotron Frequency $f = \frac{qB}{2\pi m}$
Faraday's Law $\epsilon_{emf}=-rac{d\phi_B}{dt}$	Biot-Savart Law $d\vec{B} = rac{\mu I \vec{r} imes d \vec{s}}{4\pi r^3}$	Force between two parallel wires $F = \frac{\mu_0 I_2 I_1 L}{2\pi r}$	Magnetic field in a solenoid $B = \mu_0 \left(\frac{N}{L}\right) I$
Lenz's Law: "Current induced by EMF always opposes the change in magnetic flux"	$\frac{Magnetic\ Induction}{Flux\ through\ n\ loop\ coil,\ from\ first} \phi_B = n\phi_1$	Magnetic Permeability $\mu=\mu_0(1+\chi)$	Rod connected to circuit moving with velocity through B field $\epsilon_{emf} = vBL \rightarrow I = \frac{\epsilon}{R} \rightarrow F = IlB$

Mutual Inductance $\phi_2 = MI_1 \mid \epsilon_2 = -rac{d\phi_2}{dt} = -rac{MdI_2}{dt}$	Emf from bar connected to circuit $\epsilon = -lvB$		Self-inductance $\phi = LI \mid \epsilon = -L * \frac{di}{dt}$
Self-inductance for solenoid of length b $L = \mu_0 N^2 \pi r^2 l$ (N is turns per meter)	$\frac{AC\ Circuits}{For\ AC,\ Max\ current}$ $I_{Max} = \omega Q_{CMax}$	"n" turns ratio $n_{turnsRatio} = \frac{n_p}{n_s}$	$Energy = P_{ower} * \Delta t$ Magnetic fields never do work because they always generate force perpendicular to a charge's motion.
$\omega_0 = \frac{1}{\sqrt{LC}}$	$Z = \frac{V_{RMS}}{I_{RMS}}$	Magnetic field in a capacitor $\int B * dl = \mu_0(I_D)_{enclosed}$	Average Power Dissipated $P = \frac{1}{2}I_0^2 R = \frac{1}{2}\left(\frac{V_0}{Z}\right)^2 R$
$Q_{C} = CV_{MAX}\cos(\omega t)$	$I_{C} = -\omega C V_{MAX}(\sin(\omega t)) = -\frac{V_{MAX} \sin(\omega t)}{\frac{1}{\omega C}}$	$I_L = \frac{V_{MAX}\sin(\omega t)}{\omega L}$	$(I_D)_{Enclosed} = I_D \left(\frac{r}{r_0}\right)^2$
$\frac{Maxwell's Equations/}{Electromagnetism}$ $\int \vec{B} * \vec{ds} = \mu_0 i + \frac{1}{c^2} * \frac{\partial}{\partial t} \int \vec{E} * \vec{dA}$	$\oint \vec{B} * d\vec{A} = 0$ "The magnetic flux through any closed surface is zero"	$\int \vec{E} * \vec{ds} = -\frac{d\phi_B}{dt}$	P = VI
Time average energy flux from an Emag Wave $\overline{S} = rac{1}{2\mu_0 c} E_0^2$	Pressure of Wave $[pressure] = \frac{S}{c} (* 2 \text{ for full reflect})$	Poynting Vector $S = \frac{1}{\mu_0} E \times B$	$B = \frac{1}{c} * E$
Permittivity ϵ_0 "The ability of a substance to store electrical energy in an electrical field"	Permeability μ "Measure of the ability of a material to support the formation of a magnetic field within itself"	Em wave intensity I = u(density)c $I = \frac{P}{4\pi r^2}$	Energy Density $u = \frac{\epsilon}{2}E^2 + \frac{1}{2\mu}B^2$
Malus' Law $ heta$ is between polarizations $rac{I_2}{I_1} = \cos^2 heta$	Unpolarized light → polarizer = ½ original intensity	LC Circuit Energy $u = \frac{Q^2}{2C} + \frac{LI^2}{2}$	$u = \frac{\bar{S}}{c}$
$V_m^2 = V_{mC}^2 + V_{mR}^2 = (X_C^2 + R^2)I_m^2$	$z = \frac{V_m}{I_m} = \sqrt{\left(\frac{1}{(\omega C)^2}\right) + R^2}$	$Z = R + jQ \to \sqrt{R^2 + Q^2}$	Quality Factor $Q = \frac{\omega_0 L}{R}$